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Regularization and counterterms are some of the most elusive aspects of quantum field theory (QFT), but
they already show up in the quantum mechanics (QM) path integral and much can be gained from studying
them there. In particular, one-dimensional (1D) QM can be viewed as 1D scalar QFT and so in that case
the lessons carry over directly. In this note we compute the 1D QM partition function in several different
ways, in the process gaining insight into regularization and counterterms.

Particle on a circle

Consider the QM of a free particle on a circle of radius R, i.e. x ∼ x+ 2πR. The Hamiltonian is

H =
p2

2m
(1)

and the Lagrangian is

L =
1

2
mẋ2 (2)

The position and momentum are classically related as p = mẋ, where a dot indicates a time derivative. I set
c = ℏ = 1 but keep other units around. I will keep track of the mass dimension, e.g. 1 = [m] = [p] = −[x] =
−[t] = −[R]. The quantum momentum is quantized due to the periodicity of x. I will not go into detail
here, but an easy way to remember the quantization condition is that p ∼ −i∂x (following from [x, p] = i)
and single-valued wavefunctions are like einx/R with n ∈ Z, and therefore p = n/R. The partition function
at inverse temperature β is defined as a canonical trace, and we can easily evaluate it in the orthonormal
momentum basis ⟨m | n ⟩ = δmn,

Z(β) = Tr e−βH

=
∑
n

⟨n |e−βH | n ⟩

=
∑
n

exp

[
− βn2

2mR2

]
= ϑ3(e

−β/2mR2

)

(3)

where ϑ3(q) is EllipticTheta[3,0,q] in Mathematica. In the R → ∞ limit the leading term is

Z(β)
R→∞−→ 2πR

√
m

2πβ
(4)

We see that it diverges, but this is expected for an extensive thermodynamic quantity. We will keep the
divergent volume factor 2πR explicit; one can view R as an infrared (IR) regulator for the divergent partition
function of a particle on an infinite line. In contrast, the path integral subtleties that are the main focus of this
note have more to do with ultraviolet (UV) divergences. Before moving on, we note that the partition function
is written as a function of β, but by dimensional analysis it can only involve dimensionless combinations of
the dimensionful parameters in play: R,m, β. The particular dimensionless combination mR2/β turns out
to be the only one used. If we rescaled all physical scales by a common factor, i.e. R,m, β → λR, λ−1m,λβ,
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then the partition function (and all physics, really) would be unchanged.

In summary, this note is about computing the QM partition function of a particle on an infinite line, IR-
regulated as a very large circle, in several different ways.1 We have just seen that the canonical trace method
gives

Zcanon(β) = 2πR

√
m

2πβ
(5)

Lattice

Next let’s compute the partition function by discretizing time (but not space). This is basically how the path
integral is often introduced in QM textbooks. See for example Shankar 21.1.16-17. However we will not derive
the precise discretized measure and action, instead defining them somewhat arbitrarily as regularizations of
the continuum theory and allowing for an overall energy counterterm E0 that can depend on the UV cutoff
and the system’s parameters R,m but not on the temperature β, which is independent from the system
itself. We break the thermal circle into N intervals of size ∆ = β/N . Here ∆ is viewed as the independent
variable, not N . We define the regularized action

Sreg = βE0 +
1

2
m∆

β/∆∑
i=1

(
xi − xi−1

∆

)2

(6)

In anticipation of the regularization being “not quite right” we have allowed for an arbitrary energy coun-
terterm E0 in the Lagrangian. This turns out to be the only one we need. We define the regularized path
integral measure

(Dx)reg =

β/∆∏
i=1

dxi

∆
(7)

The path integral measure must be dimensionless, and we achieved this rather arbitrarily with powers of the
UV cutoff ∆; any factor independent of β would have sufficed. The regularized partition function reduces
to coupled Gaussian integrals and can be evaluated exactly (up to terms exponentially suppressed by R),
yielding

∫ β/∆∏
i=1

dxi

∆

 exp

−βE0 −
1

2
m∆

β/∆∑
i=1

(
xi − xi−1

∆

)2
 =

2πR e−βE0

∆
√
β/∆

(
2π

m∆

) β
2∆− 1

2

=
2πR√
2πβ/m

exp

[
−βE0 +

β

2∆
log

2π

m∆

] (8)

We see that choosing

E0 =
1

2∆
log

2π

m∆
+ Eren (9)

where the “renormalized” energy Eren is independent of R, m, β, and ∆. It yields a partition function
independent of ∆, and we can safely take the ∆ → 0 limit to get

Zlattice(β) = 2πR

√
m

2πβ
e−βEren (10)

This agrees with Zcanon up to the overall energy shift by Eren, and one might argue that this can only be
determined by measurement in the first place anyway so we’re not really losing any information at all.

1For finite R the path integral must take winding modes into account, but they are exponentially suppressed by R and so
can be ignored in our large-R context.
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Fourier

Next use Fourier regularization. We expand x(t) in orthonormal Fourier modes and impose a momentum
cutoff Λ. Let N = Λβ be the number of modes we end up keeping, and for simplicity assume N is odd. One
should think of Λ as the independent parameter, not N . We have

x(t) =
a0√
β
+

√
2

β

N−1
2∑

n=1

(
an cos

2πnt

β
+ bn sin

2πnt

β

)
(11)

Note the periodicity of x means a0 ∼ a0 + 2πR
√
β. The normalization is such that∫ β

0

dt x(t)2 = β

a20
β

+
2

β

N−1
2∑

n=1

(
1

2
a2n +

1

2
b2n

) = a20 + a21 + . . . (12)

We adopt the measure

(Dx)reg = Λ3/2da0

N−1
2∏

n=1

Λ3dandbn (13)

where once again we used powers of the cutoff to make the measure dimensionless. The action in these
variables is

S[x] = βE0 +
m

2

N−1
2∑

n=1

(
2πn

β

)2

(a2n + b2n) (14)

The partition function contribution from an is∫
Λ3/2dan exp

[
−m

2

(
2πn

β

)2

a2n

]
=

Λ3/2β

n
√
2πm

=
N3/2

n
√
2πmβ

(15)

The full partition function is then

ZFourier(β) = Λ3/22πR
√

β

N−1
2∏

n=1

(
N3/2

n
√
2πmβ

)2

e−βE0

=
2πRN3/2

β

(
N3/2

√
2πmβ

)N−1 (
N − 1

2

)
!−2e−βE0

(16)

The Stirling approximation states(
N − 1

2

)
! ≈

√
2π

N − 1

2

(
N − 1

2e

)N−1
2

(17)

and therefore at leading order we have

ZFourier(β) =
2πRN3/2

β

(
N3/2

√
2πmβ

)N−1
1

π(N − 1)

(
2e

N − 1

)N−1

e−βE0

=
2πRN1/2

πβ

(
N1/2

√
2πmβ

)N−1 (
1− 1

N

)−N

(2e)N−1e−βE0

=
2πRN1/2

2πβ

(
N1/2

√
2πmβ

)N−1

(2e)Ne−βE0

= 2πR

√
m

2πβ

(
4e2Λ

2πm

)N/2

e−βE0

= 2πR

√
m

2πβ
exp

[
−βE0 +

1

2
βΛ log

4e2Λ

2πm

]

(18)
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We see that choosing

E0 =
1

2
Λ log

4e2Λ

2πm
+ Eren (19)

results in

ZFourier(β) = 2πR

√
m

2πβ
e−βEren (20)

This is the exact same result as for the lattice regularization.

Zeta function

Finally let’s try zeta regularization. Once again we expand in orthonormal Fourier modes, but this time we
keep the whole infinite series,

x(t) =
a0√
β
+

√
2

β

∞∑
n=1

(
an cos

2πnt

β
+ bn sin

2πnt

β

)
(21)

For the measure we take

(Dx)reg = Λ3/2a0

∞∏
n=1

Λ3dandbn (22)

where now Λ is an arbitrary mass scale (independent of R,m, β) inserted to keep the measure dimensionless.
It is not necessarily large. Proceeding with the path integral, we get a zero mode factor and a functional
determinant

Zzeta(β) = Λ3/22πR
√

β det ′
( m

2πΛ3
∂2
t

)−1/2

= Λ3/22πR
√
β

∞∏
n=1

(
Λ3/2β

n
√
2πm

)2 (23)

The prime in det′ indicates that we omit the zero mode in computing the determinant. The infinite product
can be evaluated with zeta function regularization. Given an operator D with spectrum λn (with any zero
modes omitted), one defines the zeta function

ζD(s) ≡
∑
n

λ−s
n (24)

Then formally

ζ ′D(s) = −
∑
n

λ−s
n log λn (25)

and so
e−ζ′

D(0) =
∏
n

λn = detD (26)

Performing these manipulations here gives

Zzeta(β) = Λ3/22πR
√
β

√
2πm

2πΛ3/2β
(27)

Simplifying slightly, the final form is

Zzeta(β) = 2πR

√
m

2πβ
(28)

We have another match. Note that Λ dropped out on its own, with no need for a counterterm.
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