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1 Introduction

I assume that no part of this note is new to the literature, but the whole may be useful for its pedagogy and
for its unified presentation of some facts that are usually scattered across the literature.

This note attempts to clarify some properties of scalar partition functions in d dimensions. Particular cases of
interest are the conformally coupled scalar, the compact scalar, and the massive scalar. I will focus primarily
on the backgrounds Sd and Sd−1 × R, and I will use R for the radius of the respective sphere. The Ricci
scalar of Sd is

R =
d(d− 1)

R2
(1)

The Euclidean free scalar Lagrangian with mass m and curvature coupling ξ is

L =
1

2
gµν∇µϕ∇νϕ+

1

2
m2ϕ2 +

1

2
ξRϕ2 (2)

The corresponding action on a Euclidean manifold M is

S =

∫
M

ddx
√
g L (3)

The kinetic operator is
∆ = −∇2 +m2 + ξR (4)

In our cases of interest R will be non-negative, so generically nonzero m, ξ will lift the zero mode. If
m = ξ = 0 then there is precisely one zero mode, and the partition function will diverge unless we take ϕ to
be periodic. Its period is a new physical parameter of the system.

Recall that after setting ℏ = c = 1 the mass dimension of a boson is

[ϕ] =
d− 2

2
(5)

Note the curvature coupling is dimensionless, [ξ] = 0.
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2 Weyl transformation

Once we have a notion of putting the same theory on different backgrounds, the notion of a Weyl transfor-
mation is well-defined. We simply choose a reference metric ḡµν and consider the family of metrics that can
be written as

gµν = e2ω ḡµν (6)

and then we ask how a given quantity depends on ω. In the quantum theory this can be subtle.

Perhaps the simplest example is the Weyl variation of the classical action. Using

δWϕ = −[ϕ]δω ϕ =
2− d

2
δω ϕ

δW
√
g = d δω

√
g

δW gµν = −2δω gµν

δWR = 2(1− d)∇2δω − 2δωR

(7)

one finds

δWS =

∫
M

ddx
√
g

(
2− d

2
ϕ∇µϕ∇µ +

1

2
m2ϕ2 + ξϕ2(1− d)∇2

)
δω

=

∫
M

ddx
√
g

([
2− d

2
− 2ξ(1− d)

]
ϕ∇µϕ∇µ +

1

2
m2ϕ2

)
δω

(8)

We see this vanishes iff m = 0 and

ξ =
d− 2

4(d− 1)
(9)

This is called the conformal coupling. See e.g. (9.89) of [6]. The need for m = 0 is very intuitive: any
nonzero m would set a physical scale, making scale-invariance hopeless.

The (negative) log partition function is the quantum analogue of the classical action, and in even dimensions
it is not scale-invariant even at conformal coupling. This failure can be traced to the path integral measure,
and it is called a conformal anomaly.

3 CFT

On a manifold M with metric gµν , the (Euclidean) stress tensor is defined (up to contact terms) by1

1
√
g

δ

δgµν(x)

〈
. . .
〉
M

=
1

2

〈
Tµν(x) . . .

〉
M

(10)

where ⟨. . .⟩M is a correlator of local operators computed in the background M . In the special case of an
infinitesimal Weyl transformation, δgµν = 2δω gµν , we have

1
√
g

δ

δω(x)
log
〈
. . .
〉
M

=

〈
Tµ

µ(x) . . .
〉
M〈

. . .
〉
M

(11)

CFT’s are characterized by classical Weyl-invariance, meaning that Tµ
µ vanishes up to anomaly. It turns out

that the anomalous operator Tµ
µ(x) is a c-number, decoupling from all other local operators. (I.e. locally

it’s a multiple of the identity.) Therefore the other insertions on the right-hand of (11) cancel out, and we’re

1This is the field theory convention. The string theory convention differs by a factor of −2π. See (1.2.22), (3.4.4) of [13] and
(3.189) of [4]. Keep in mind also that the Lorentzian and Euclidean cases differ by a sign.
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left with the c-number Tµ
µ. Rewriting slightly and specializing to the partition function Z(M) ≡ ⟨1⟩M , we

have

δW logZ(M) =

∫
ddx

√
g δω(x)Tµ

µ(x) (12)

There is extensive literature on how to compute the trace anomaly Tµ
µ(x), also known as the Weyl anomaly.

In general it consists of curvature invariants. In d = 2 we have simply [13]2

d = 2 : Tµ
µ =

c

24π
R (13)

where c is the central charge. In odd dimensions the anomaly vanishes. In d = 4 we have (see e.g. (6.112)
and (6.105) of [4])

d = 4 : Tµ
µ = a4E4 +

b4
32π2

CµνρσC
µνρσ +

d4
32π2

∇2R (14)

where Cµνρσ is the Weyl tensor and E4 is the 4D Euler density3

E4 =
1

32π2

(
RµνρσRµνρσ − 4RµνRµν +R2

)
(15)

My convention for the coefficients a4, b4, d4 is nonstandard. Their values depend on the particular CFT in
question. Using e.g. (6.112) and (6.106) of [4], for the conformally coupled scalar they are

a4 = − 1

180
, b4 =

1

60
, d4 =

1

90
(16)

The general structure of the trace anomaly is described on pg. 10 of [7]. (See [11] for a more modern
discussion.) There is one type A term, proportional to the Euler density Ed. The B terms correspond to
all the Weyl invariants one can construct from the Weyl tensor and its derivatives. Their number increases
with dimension. In d = 2 there are no type B terms, in d = 4 there is one, and in d = 6 there are three.
There can also be total derivative terms, referred to as type D anomalies in [11], which can be removed by
conformally non-invariant local counterterms. Most authors choose to remove them, but we have kept them
for no good reason.4 For the general case let’s write

Tµ
µ = adEd +

∑
i

bd,iIi +
∑
j

dd,jJj (17)

where the Ii are constructed from the Weyl tensor and its derivatives. I don’t know much about the type
D terms. Recalling that the (1, 3)-valent Weyl tensor Cµ

νρσ is Weyl-invariant, we can see that the d = 4 B
term

√
g CµνρσC

µνρσ is indeed Weyl-invariant.

In the special case of constant δω, i.e. a dilation, the type D terms drop out and on a Weyl-flat manifold we
have

δ

δω
logZ(M) =

∫
ddx

√
g Tµ

µ

= ad χ(M)

(18)

where χ(M) is the Euler characteristic. Consider the case of a conformal scalar on a sphere of radius R as
a check. In d = 2 the Euler density is E2 = 1

4πR so apparently a2 = 1
6c. Recall also that χ(S2) = 2. Then

2It’s actually possible to also have a constant term in the trace, coming from a cosmological constant as in (3.4.25) of [13].
This is not Weyl-invariant, but it’s state-independent and really just a number, so we still consider the CFT a CFT. People
almost always use a scheme where it’s set to zero.

3The Euler density is a curvature invariant whose integral (in my convention) gives the Euler characteristic, and in d = 2n
dimensions it involves n powers of the Riemann tensor. See [12] for more discussion.

4Different regularization schemes (might) give different values of d4, which means we’re forced to introduce the counterterm∫
R2. This breaks Weyl invariance, but I guess it’s state-independent so maybe its effect is mild enough that we’d still consider

the theory a CFT. Similar to the footnote above for trace anomaly in 2D CFT. See also 2404.15561 for 6D total derivative
effects in the Casimir energy.
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δ
δω logZ(S2) = 1

3 and consequently logZ(S2) ∼ 1
3 logR, which is consistent with the familiar 2D CFT result

that logZ(S2) ∼ c
3 logR.

On a product space M ×N we have χ(M ×N) = χ(M) · χ(N), and we know χ(S1) = 0, so for any M we
have χ(M×S1) = 0 and therefore for any Weyl-flatM the thermal partition function Z(M×S1) is invariant
under dilations. In particular, all round spheres are Weyl-flat so Z(Sd−1 × S1) is invariant under dilations.

The anomaly completely determines the trace of the stress tensor, but it also affects the other components.
The stress tensor vanishes in flat space Rd, so in Weyl-related spaces the whole stress vev is determined by
the type A and D anomalies. The results for d = 2, 4 can be found in [5]. The cylinder case M = Sd−1 × S1

is of particular interest, and the type A contribution for general d can be found in [11]. As a corollary they
compute the Casimir energies. The d = 2 result is

ECasimir(S
1) = − c

12R
= − a2

2R
(19)

and the d = 4 result for the conformal scalar is

ECasimir(S
3) = −3a4

8R
+ type D =

1

240R
(20)

4 Partition function on Sd

From above, our kinetic operator is

∆ = −∇2 +m2 +
d(d− 1)

R2
ξ (21)

Case d = 2

For simplicity let’s restrict to special cases. First work in d = 2 with conformal coupling ξ = 0, which
happens to also be minimal. We will work through it in some detail to illustrate general principles, in
particular how to handle zero modes. Take ϕ to be periodic, ϕ ∼ ϕ+C. Note [C] = 0. Work in the limit of
large C so that winding modes are exponentially suppressed and we can ignore them. In this way C comes
in rather trivially and is effectively an IR regulator for the would-be zero mode divergence. We expand the
field in orthonormal eigenmodes of the Laplacian,

ϕ(x) =
∑
n

ϕnfn(x) (22)

where ∫
S2

d2x
√
g fm(x)fn(x) = δmn (23)

This means that fn(x) depends on R. The dimensions are [fn] = 1 and [ϕn] = −1. Note that for n ̸= 0 the

ϕn are real-valued, but the zero mode has ϕ0 ∼ ϕ0 +
√
4πR2 C. The action is

S[ϕ] =
1

2

∑
n

λnϕ
2
n (24)

where λn is the eigenvalue of fn(x). We adopt the measure

Dϕ =
∏
n

µdϕn (25)
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where µ is an arbitrary mass scale inserted to make the measure dimensionless. It’s like a UV cutoff. The
partition function is

Z(R,C, µ) =

∫
Dϕ e−S[ϕ]

=
√
4π µRC

∏
n ̸=0

µ−2λn

−1/2 (26)

This product is divergent and must be regularized somehow. Zeta regularization (see e.g. [17]) gives

Z(R,C, µ) =
√
4π µRC × (µR)−2/3σ (27)

where σ is a computable number independent of R, C, and µ. It, and the factor of
√
4π, can be absorbed

into a redefinition of µ. This leaves us with

logZ(R,C, µ) =
1

3
logµRC3 + non-universal (28)

For any 2D CFT the coefficient of logR will be c/3, and for the scalar we have c = 1 so this checks out.
Zeta regularization automatically gets rid of power terms of the UV regulator µ, but the log term remains.
At least in this partition function context, the explicit dependence on µ in the final answer indicates an
anomaly; the supposedly conformally invariant partition function in fact depends on R. The path integral
recipe here, where we expand in orthonormal eigenmodes and introduce an arbitrary scale to make the
measure dimensionless, will be used repeatedly. Note finally that if we had instead used a lattice cutoff with
spacing ε then the log divergence would have been 1

3 log
R
ε . If we parametrize the cutoff with the number of

sites N ∼ R/ε rather than the spacing ε then the log divergence reads 1
3 logN . This has no R dependence

and so one might näıvely conclude that the coefficient of logR is zero rather than 1
3 . This mistake shows

that one must be careful when asking about the “universal log coefficient”. See section 3 of [8] for further
discussion.

In d = 2 the case of general nonzero m, ξ is actually tractable. There are no zero modes, so we just have a
determinant to compute,

Z(R,m, ξ, µ) = det(µ−2∆)−1/2

=

(∏
n

µ−2λn

)−1/2

=

( ∞∏
ℓ=0

[
ℓ(ℓ+ 1) + (mR)2 + 2ξ

(µR)2

]2ℓ+1
)−1/2

(29)

We evaluate by taking derivatives of the log until the series converges. Note only the combinations

ρ ≡ (mR)2 + 2ξ (30)

and µR show up, so the final answer must also be a function of only these combinations. We proceed as

∂2ρ logZ(ρ, µR) = −1

2
∂2ρ

∞∑
ℓ=0

(2ℓ+ 1) log
ℓ(ℓ+ 1) + ρ

(µR)2

= −1

2
∂ρ

∞∑
ℓ=0

(2ℓ+ 1)

ℓ(ℓ+ 1) + ρ

=
1

2

∞∑
ℓ=0

(2ℓ+ 1)

[ℓ(ℓ+ 1) + ρ]2

=
1

2
√
1− 4ρ

[
ψ′(1−√

1− 4ρ

2

)
− ψ′(1 +√

1− 4ρ

2

)]
(31)
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where ψ(z) = ∂z log Γ(z) is the digamma function. This implies

logZ(ρ, µR) = f(ρ) + ρC1(µR) + C2(µR) (32)

where C1, C2 are constants of integration and

f(ρ) =
1

2

√
1− 4ρ

[
log Γ

(1−√
1− 4ρ

2

)
− log Γ

(1 +√
1− 4ρ

2

)]
+ψ(−2)

(1−√
1− 4ρ

2

)
+ψ(−2)

(1 +√
1− 4ρ

2

)
(33)

with ψ(−2)(z) the second antiderivative of ψ(z), or equivalently the first antiderivative of log Γ(z). It’s
in Mathematica as PolyGamma[-2, z]. The main point is that Z primarily depends on the dimensionless
combination ρ, and the only possible µ dependence comes from C1, C2. We can actually deduce C1, C2 using
heat kernel methods. The heat kernel coefficient that controls UV divergences in d = 2 is a2(x). From (4.27)
of [16], when m = 0 it is

a2(x) =
1

24π
(1− 6ξ)

2

R2
=

1− 6ξ

12πR2
(34)

The log UV divergent behavior of the partition function, i.e. the µ dependence, is (using µ as an actual UV
cutoff now, and focusing only on small t since a2(x) is defined by the small t expansion)

logZ(R, ξ, µ) ⊃ 1

2

∫
µ−2

dt

t

∫
d2x

√
g
1− 6ξ

12πR2

=
1− 6ξ

6

∫
µ−2

dt

t

=
1− 6ξ

3
logµ + non-µ

(35)

A full calculation using the exact heat kernel, as opposed to just its small-t expansion, would give a log with
dimensionless argument. The only other scale around is R, so we must actually have

logZ(R, ξ, µ) ⊃ 1− 6ξ

3
logµR (36)

Comparing with the above expression for Z(ρ, µR) tells us

C1(µR) = − logµR, C2(µR) =
1

3
logµR (37)

The full answer is then

logZ(R,m, ξ, µ) = f(m2R2 + 2ξ)−
(
m2R2 + 2ξ − 1

3

)
logµR (38)

Compare with (C.21) of [3]. One important takeaway is that even without the µ terms, the partition
function is not scale invariant due to m. The presence of an explicit scale in the couplings always breaks
scale invariance. However rescaling all parameters, including the UV regulator, according to their dimensions
leaves the partition function invariant. Note the 1

3 logµR part of the anomaly is the same as in the conformally
coupled case.

As a nice consistency check let’s recover the conformal scalar by setting ξ = 0 and sending m → 0. Recall
that for the conformal scalar the IR regulator was its dimensionless period C. Here the effect of the mass
kicks in when the action term

∫
d2x 1

2m
2ϕ2 ∼ (mR)2ϕ2 is of order unity, so ϕ’s fluctuations will be cut off

around ϕ ∼ 1
mR , and we should identify C ∼ 1

mR . Note that the C1 term vanishes in the m → 0 limit, and
that

f(ρ) = −1

2
log(1−

√
1− 4ρ) +O

(
(1−

√
1− 4ρ)0

)
= − logmR+O

(
(mR)0

)
(39)
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We are left with

logZ(R,m, µ) = log
1

mR
+

1

3
logµR+O

(
(mR)0

)
(40)

Identifying 1
mR ∼ C we see that this agrees with the 2D conformal scalar calculation above in (28).

Case d > 2

Next move onto d > 2, where we will be less explicit. The conformally coupled scalar in odd dimensions
has only the parameters R,µ. Its partition function has no log term, and accordingly the constant piece
(independent of R,µ) is universal. The lack of R-dependence is as it should be for the partition function of
a non-anomalous conformally invariant theory. Note that since µ only shows up in the measure

∏
n µdϕn,

and µ drops out, the measure itself must be scale-invariant.

The periodic scalar (necessarily massless and minimally coupled) in odd d has only the parameters R,C, µ.
Recall [C] = [ϕ] = d−2

2 and the mode coefficients have [ϕn] = −1. The partition function has a zero mode
part and a functional determinant part,

Z(R,C, µ) = µCRd/2 × det ′(−µ−2∇2)−1/2 (41)

The prime on the determinant indicates that we omit zero modes. According to (16) of [9], in odd dimensions
pulling a factor out of the Laplacian determinant results in its reciprocal factor outside. This implies

Z(R,C, µ) = µCRd/2 × 1

µR
det ′(−R2∇2)−1/2

= CR
d−2
2 det ′(−R2∇2)−1/2

(42)

Now µ has cancelled out entirely, and note that R2∇2 is independent of R. The partition function still has
R-dependence though, stemming from the zero mode contributing a different factor of R than the rest of
the modes. It’s also intuitive that the dimensionful scale [C] broke scale invariance [1].

Consider the conformal scalar in d = 4 and recall χ(S4) = 2. The partition function depends only on R,µ.
We know from above that its scaling is set by a4χ(S

4) = −1/90, i.e.

logZ(R,µ) = − 1

90
logµR+ non-universal (43)

For the conformal scalar partition function in general even d the log coefficient 2ad is the only physical
observable.

Some lessons are as follows. Only dimensionless combinations of the physical parameters (including the
UV regulator) can show up. The UV regulator µ only shows up through anomaly, and only in very simple
ways such as a log. When R is the only parameter besides µ (as in the CFT case), the partition function
really does have only one number’s worth of information. The PI measure is scale-invariant up to anomaly.
There is still anomaly with a mass present, although there is also richer dependence on mR. Under dilations
the field does not inherently transform according to its dimension, but this is not a problem thanks to the
scale-invariance of the measure (up to anomaly), and the classical action is what naturally picks out the
dimension of the operator.
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5 Partition function on Sd−1 × S1

For simplicity I’ll not consider twists around the S1 (in the d = 2 case this means I only consider rectangular
tori). Let the proper length of the S1 be β. Once again let’s split into cases, starting with the 2D CFT case
with large period ϕ ∼ ϕ+ C. From (7.2.7-10) of [13] we have

Z(β,R,C, µ) =
C√
β/R

|η
( iβ

2πR

)
|−2 (44)

where the Dedekind eta function is

η(iτ2) = (e−2πτ2)1/24
∞∏

n=1

(1− e−2πnτ2) (45)

Note β,R only show up in the combination β/R, and there is no UV regulator in the final answer. This
is not a coincidence. From the CFT section above we know that rescaling β,R by the same factor, i.e.
dilating the full manifold, while keeping other parameters fixed must leave the partition function invariant
because χ(T 2) = 0. But we also know that rescaling all parameters according to their respective dimensions,
including the UV regulator µ, always leaves the partition function invariant. Together these facts imply that
the torus partition function is independent of µ. A similar argument applies for general d.

Another thing to note about this partition function is its large β behavior,

Z ∼ 1√
β
exp

[
β

12R

]
(46)

We expect the coefficient of −β in the exponent to be the vacuum energy, and indeed it agrees with the
Casimir energy (19).

6 Flat space

Despite being the most familiar and well-studied case, flat space is in many ways pathological. Most authors
are very cavalier about its subtleties. For example consider Polyakov’s famous non-local effective action for
the anomaly in 2D CFT [14], reviewed for example in (3.4.19) of [13]. It states that for a conformally flat
metric g one has

Z[gµν ] = Z[δµν ] exp

(
a1
8π

∫
d2x

∫
d2x′

√
g(x)R(x)G(x, x′)

√
g(x′)R(x′)

)
(47)

where G(x, x′) is the Green’s function for the Laplacian with respect to g. Under a rigid dilation both
√
gR

and the Green’s function are invariant, so this formula suggests that the partition function must be invariant
as well. In the case of a sphere this is clearly in contrast with the discussion above. But many authors like
to claim that the plane is really just a big regulated sphere, so something is fishy. The resolution is related
to the fact that the Laplacian is not invertible on closed manifolds, whereas for an asymptotically flat space
we discard the constant mode as being non-normalizable. This is discussed in detail in [10].

Related to this, one may wonder how dilation-invariance on the plane is consistent with dilation non-
invariance on closed manifolds. It turns out that one can indeed view the plane as a big regulated sphere,
but the dilation of the plane gets regulated into a certain global conformal transformation on the sphere,
rather than a dilation of the sphere.

See e.g. [2] for careful calculations of partition functions in flat space.
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